WELDWIRE COMPANY, INC.

Technical Information

Stainless Steel Bare WireAlloy: WW308Conforms to Certification: AWS A5.9Class: ER308ASME SFA A5.9

<u>Alloy ER308 Welding Data</u> Weld Process Used for Tig, Mig and Submerged Arc

AWS Chemical Composition Requirements

C = 0.08 max	P = 0.03 max
Cr = 19.5 - 22.0	S = 0.03 max
Ni = 9.0 - 11.0	Mo = 0.75 max
Mn = 1.0 - 2.5	Cu = 0.75 max
Si = 0.30 - 0.65	

Deposited Chemical Composition % (Typical)

C = 0.04	Si = 0.30	Mn = 1.8
P = 0.009	S = 0.009	Cr = 20.0
Ni = 9.5	N = 0.05	

Deposited All Weld Metal Properties

Data is typical for ER308 weld metal deposited by Mig using Argon + 2% oxygen and Tig using 100% Argon as the shielding gas. Data on sub-arc is not presented, as sub-arc is dependent on the type of flux used.

Mechanical Properties

Yield Strength	61,000psi
Tensile Strength	90,000psi
Elongation	41%
Reduction of Area	60%

Application

WW308 is used for TIG, MIG, and submerged arc welding of un-stabilized stainless steels such as Types 301, 302, 304, 305, 308. This filler metal is the most popular grade among stainless steels, used for general purpose applications where corrosion conditions are moderate.

Recommended Welding Parameters

<u>GMAW</u>	"Mig Pr	ocess"	Rev	ersed Polarity	
Wire <u>Diameter</u>	Wire Feed	Amps	Volts	Shielding Gas	Gas CFH
Short Arc	Welding				
.030 .035	13-26 13-26	40-120 60-140	16-20 16-22	Argon+2% O ₂ Argon+2% O ₂	25 25
Spray Arc	Welding				
.035	20-39	140-220	24-29	Argon+2% O ₂	38
.045	16-30	160-260	25-30	Argon+2% O ₂	38
1/16	10-16	230-350	27-31	Argon+2% O ₂	38

GTAW "Tig Process"

Wire Diameter	Amps DCRP	Voltage	Gases
.035	60-90	12-15	Argon 100%
.045	80-110	13-16	Argon 100%
1/16	90-130	14-16	Argon 100%
3/32	120-175	15-20	Argon 100%

Note: Parameters for tig welding are dependent upon plate thickness and welding position.

Other shielding Gases may be used for Mig and Tig welding. Shielding gases are chosen taking Quality, Cost, and Operability into consideration

Submerged Arc Welding

Reverse Polarity is suggested

Wire Diameter	Amps	Volts
3/32	250-450	28-32
1/8	300-500	29-34
5/32	400-600	30-35
3/16	500-700	30-35

Both Agglomerated and fused fluxes can be used for submerged arc welding. <u>Note:</u> The chemical composition of the flux mainly affects the chemistry of the weld metal and consequently its corrosion resistance and Mechanical properties

