WELDWIRE COMPANY, INC.

Technical Information

Stainless Steel Bare Wire

Alloy: WW308SI Conforms to Certification: AWS A5.9
Class: ER308SI ASME SFA A5.9

Alloy ER308SI Welding Data Weld Process Used for Tig, Mig and Submerged Arc

AWS Chemical Composition Requirements

C = 0.08 max	P = 0.03 max
Cr = 19.5 - 22.0	S = 0.03 max
Ni = 9.0 - 11.0	Mo = 0.75 max
Mn = 1.0 - 2.5	Cu = 0.75 max
Si = 0.65 - 1.00	

Deposited Chemical Composition % (Typical)

C = 0.05	Si = 0.72	Mn = 1.70
P = 0.011	S = 0.009	Cr = 20.0
Ni = 10.0		

Deposited All Weld Metal Properties

Data is typical for ER308SI weld metal deposited by Mig using Argon + 2% oxygen and Tig using 100% Argon as the shielding gas. Data on sub-arc is not presented, as sub-arc is dependent on the type of flux used.

Mechanical Properties

Yield Strength	57,000psi
Tensile Strength	87,000psi
Elongation	34%
Reduction of Area	56%

Application

ER308SI is suitable for joining stainless steels of type 304 and 347. It is the same as ER308 with a higher silicon content.

Recommended Welding Parameters

<u>GMAW</u>	"Mig Pr	ocess"	Rev	ersed Polarity	
Wire <u>Diameter</u>	Wire Feed	Amps	Volts	Shielding Gas	Gas CFH
Short Arc	Welding				
.030 .035	13-26 13-26	40-120 60-140	16-20 16-22	Argon+2% O ₂ Argon+2% O ₂	25 25
Spray Arc	Welding				
.035 .045 1/16	20-39 16-30 10-16	140-220 160-260 230-350	24-29 25-30 27-31	Argon+2% O ₂ Argon+2% O ₂ Argon+2% O ₂	38 38 38

GTAW "Tig Process"

Wire <u>Diameter</u>	Amps DCRP	Voltage	Gases
.035	60-90	12-15	Argon 100%
.045	80-110	13-16	Argon 100%
1/16	90-130	14-16	Argon 100%
3/32	120-175	15-20	Argon 100%

Note: Parameters for tig welding are dependent upon plate thickness and welding position.

Other shielding Gases may be used for Mig and Tig welding. Shielding gases are chosen taking Quality, Cost, and Operability into consideration

Submerged Arc Welding

Reverse Polarity is suggested

Wire Diameter	<u>Amps</u>	<u>Volts</u>
3/32	250-450	28-32
1/8	300-500	29-34
5/32	400-600	30-35
3/16	500-700	30-35

Both Agglomerated and fused fluxes can be used for submerged arc welding. **Note:** The chemical composition of the flux mainly affects the chemistry of the weld metal and consequently its corrosion resistance and Mechanical properties

