WELDWIRE COMPANY, INC.

Technical Information

Stainless Steel Bare Wire

Alloy: WW309LSI Conforms to Certification: AWS A5.9

Class: ER309LSI ASME SFA A5.9

Alloy ER309LSI Welding Data

Weld Process: Used for Mig, Tig, and Submerged Arc welding

AWS Chemical Composition Requirements

C = 0.03 max	P = 0.03 max
Cr = 23.0 - 25.0	S = 0.03 max
Ni = 12.0 - 14.0	Mo = 0.75 max
Mn = 1.0 - 2.5	Cu = 0.75 max
Si = 0.65 + 1.00	

Si = 0.65 - 1.00

Deposited Chemical Composition % (Typical)

C = 0.019	P = 0.008
Cr = 23.50	S = 0.006
Si = 0.84	Ni = 12.95
Mn = 1.85	Mo = 0.15

Deposited All Weld Metal Properties

The following data is typical for mig welding with Argon + 2% oxygen and tig with Argon as shielding gas. Data on sub-arc is dependent on the type of flux used.

Mechanical Properties (R.T.)

Yield Strength	60,500psi
Tensile Strength	89,000psi
Elongation	35%
Reduction of Area	60%

Application

ER309LSI is suitable for joining stainless steels of the 304 type and 347 types. The higher silicon gives are stability and exceptionally smooth bead appearance.

Recommended Welding Parameters

<u>GMAW</u>	"Mıg Pr	ocess'	<u>Rev</u>	ersed Polarity	
Wire <u>Diameter</u>	Wire <u>Feed</u>	Amps	Volts	Shielding Gas	Gas CFH
Short Arc	Welding				
.030 .035	13-26 13-26	40-120 60-140	16-20 16-22	Argon+2% O ₂ Argon+2% O ₂	25 25
Spray Arc	Welding				
.035 .045 1/16	20-39 16-30 10-16	140-220 160-260 230-350	24-29 25-30 27-31	Argon+2% O ₂ Argon+2% O ₂ Argon+2% O ₂	38 38 38

GTAW "Tig Process"

Wire <u>Diameter</u>	Amps DCRP	Voltage	Gases
.035	60-90	12-15	Argon 100%
.045	80-110	13-16	Argon 100%
1/16	90-130	14-16	Argon 100%
3/32	120-175	15-20	Argon 100%

Note: Parameters for tig welding are dependent upon plate thickness and welding position.

Other shielding Gases may be used for Mig and Tig welding. Shielding gases are chosen taking Quality, Cost, and Operability into consideration

Submerged Arc Welding

Reverse Polarity is suggested

Wire Diameter	<u>Amps</u>	<u>Volts</u>
3/32	250-450	28-32
1/8	300-500	29-34
5/32	400-600	30-35
3/16	500-700	30-35

Both Agglomerated and fused fluxes can be used for submerged arc welding. Note: The chemical composition of the flux mainly affects the chemistry of the weld metal and consequently its corrosion resistance and Mechanical properties.

