WELDWIRE COMPANY, INC.

Technical Information

Stainless Steel Bare Wire

Alloy: WW316H Conforms to Certification: AWS A5.9
Class: ER316H ASME SFA A5.9

Alloy ER316H Welding Data

Weld Process: Used for Mig, Tig, and Submerged Arc

AWS Chemical Composition

C = 0.04 - 0.08	Si = 0.30 - 0.65
Cr = 18.0 - 20.0	P = 0.03 max
Ni = 11.0 - 14.0	S = 0.03 max
Mo = 2.0 - 3.0	Cu = 0.75 max
Mn = 1.0 - 2.5	

Deposited Chemical Composition % (Typical)

C = 0.06	Mo = 2.25	P = 0.012
Cr = 19.25	Mn = 1.80	S = 0.010
Ni = 11.25	Si = 0.40	

Deposited All Weld Metal Properties

Data is typical for ER316H weld metal deposited by Mig using Argon + 2% oxygen and Tig using 100% Argon as the shielding gas. Data on sub-arc is dependent on the type of flux used.

Mechanical Properties (R.T.)

Yield Strength	59,000psi
Tensile Strength	88,000psi
Elongation	40%
Reduction of Area	60%

Application

ER316H is used to weld wrought and cast forms of similar composition. The presence of molybdenum increases its creep resistance at elevated temperatures. The lower ferrite level of this nominal composition reduces the rate of corrosion in certain media and is suitable for use at cryogenic temperatures.

Recommended Welding Parameters

<u>GMAW</u>	"Mig Pr	ocess"	Rev	ersed Polarity	
Wire <u>Diameter</u>	Wire Feed	Amps	Volts	Shielding Gas	Gas CFH
Short Arc	Welding				
.030 .035	13-26 13-26	40-120 60-140	16-20 16-22	Argon+2% O ₂ Argon+2% O ₂	25 25
Spray Arc	Welding				
.035 .045 1/16	20-39 16-30 10-16	140-220 160-260 230-350	24-29 25-30 27-31	Argon+2% O ₂ Argon+2% O ₂ Argon+2% O ₂	38 38 38

GTAW "Tig Process"

Wire	Amps	Voltage	Gases
Diameter	DCRP		
.035	60-90	12-15	Argon 100%
.045	80-110	13-16	Argon 100%
1/16	90-130	14-16	Argon 100%
3/32	120-175	15-20	Argon 100%

Note: Parameters for tig welding are dependent upon plate thickness and welding position.

Other shielding Gases may be used for Mig and Tig welding. Shielding gases are chosen taking Quality, Cost, and Operability into consideration

Submerged Arc Welding

Reverse Polarity is suggested

3/32 250-450 28-32 1/8 300-500 29-34	3
1/8 300-500 29-34	2
	1
5/32 400-600 30-35	5
3/16 500-700 30-35	5

Both Agglomerated and fused fluxes can be used for submerged arc welding. Note: The chemical composition of the flux mainly affects the chemistry of the weld metal and consequently its corrosion resistance and Mechanical properties.

