WELDWIRE COMPANY, INC.

Technical Information

Stainless Steel Bare Wire

Alloy: WW317L Conforms to Certification: AWS A5.9
Class: ER317L ASME SFA A5.9

Alloy ER317LWelding Data

Weld Process: Used for Mig, Tig, and Submerged Arc

AWS Chemical Composition

C = 0.03 max	Si = 0.30 - 0.65
Cr = 18.5 - 20.5	P = 0.03 max
Ni = 13.0 - 15.0	S = 0.03 max
Mo = 3.0 - 4.0	Cu = 0.75 max
Mn = 1.0 - 2.5	

Deposited Chemical Composition % (Typical)

C = 0.02	Mo = 3.40	P = 0.010
Cr = 18.50	Mn = 1.70	S = 0.012
Ni = 13.20	Si = 0.40	

Deposited All Weld Metal Properties

Data is typical for ER317L weld metal deposited by Mig using Argon + 2% oxygen and Tig using 100% Argon as the shielding gas. Data on sub-arc is dependent on the type of flux used.

Mechanical Properties (R.T.)

Yield Strength	55,000psi
Tensile Strength	87,000psi
Elongation	47%
Reduction of Area	70%

Application

ER317L is used for welding stainless steels with similar composition. Due to its higher molybdenum content, this alloy offers high resistance to pitting and crevice corrosion. Lower carbon makes the weld metal less susceptible to inter-granular corrosion.

Recommended Welding Parameters

<u>GMAW</u>	"Mig Pr	ocess"	Rev	ersed Polarity	
Wire <u>Diameter</u>	Wire Feed	Amps	Volts	Shielding Gas	Gas CFH
Short Arc	Welding				
.030 .035	13-26 13-26	40-120 60-140	16-20 16-22	Argon+2% O ₂ Argon+2% O ₂	25 25
Spray Arc	Welding				
.035	20-39	140-220	24-29	Argon+2% O ₂	38
.045	16-30	160-260	25-30	Argon+2% O ₂	38
1/16	10-16	230-350	27-31	Argon+2% O ₂	38

GTAW "Tig Process"

Wire <u>Diameter</u>	Amps DCRP	Voltage	Gases
.035	60-90	12-15	Argon 100%
.045	80-110	13-16	Argon 100%
1/16	90-130	14-16	Argon 100%
3/32	120-175	15-20	Argon 100%

Note: Parameters for tig welding are dependent upon plate thickness and welding position.

Other shielding Gases may be used for Mig and Tig welding. Shielding gases are chosen taking Quality, Cost, and Operability into consideration

Submerged Arc Welding

Reverse Polarity is suggested

Wire Diameter	<u>Amps</u>	<u>Volts</u>
3/32	250-450	28-32
1/8	300-500	29-34
5/32	400-600	30-35
3/16	500-700	30-35

Both Agglomerated and fused fluxes can be used for submerged arc welding. Note: The chemical composition of the flux mainly affects the chemistry of the weld metal and consequently its corrosion resistance and Mechanical properties.

