WELDWIRE COMPANY, INC.

Technical Information

Stainless Steel Bare Wire

Alloy: WW409 Conforms to Certification: AWS A5.9

Class: ER409 ASME SFA A5.9

Alloy ER409 Welding Data

Weld Process: Used for Mig, Tig and automatic Submerged Arc

AWS Chemical Composition

C = 0.08 max	Si = 0.80 max
Cr = 10.5 - 13.5	P = 0.03 max
Ni = 0.60 max	S = 0.03 max
Mo = 0.50 max	Cu = 0.75 max
Mn = 0.80 max	$Ti = 10 \times C \text{ (min)} - 1.5 \text{ (max)}$

Deposited Chemical Composition % (Typical)

C = 0.05	Mo = 0.30	P = 0.016
Cr = 11.5	Mn = 0.62	S = 0.018
Ni = 0.35	Si = 0.48	Cu = 0.16
TI 0.50		

TI = 0.50

Deposited All Weld Metal Properties

Data is typical for ER409 weld metal deposited by mig using argon + 2% oxygen and tig using 100% argon as the shielding gas. Data on sub-arc is dependent on the type of flux used.

Mechanical Properties R.T.

Yield Strength	50,500psi
Tensile Strength	67,000psi
Elongation	26%

Application

The nominal composition of this weld metal is 12% chromium with Ti added as a stabilizer. This material often is used to weld bare metal of similar composition.

Recommended Welding Parameters

<u>GMAW</u>	/ "Mig Pi	rocess"	Rev	versed Polarity	
Wire <u>Diameter</u>	Wire Feed	Amps	Volts	Shielding Gas	Gas CFH
Short Arc	Welding				
.030 .035	13-26 13-26	40-120 60-140	16-20 16-22	Argon+2% O ₂ Argon+2% O ₂	25 25
Spray Ar	c Welding				
.035 .045 1/16	20-39 16-30 10-16	140-220 160-260 230-350	24-29 25-30 27-31	Argon+2% O ₂ Argon+2% O ₂ Argon+2% O ₂	38 38 38

GTAW "Tig Process"

Wire Diameter	Amps DCRP	Voltage	Gases
.035	60-90	12-15	Argon 100%
.045	80-110	13-16	Argon 100%
1/16	90-130	14-16	Argon 100%
3/32	120-175	15-20	Argon 100%

Note: Parameters for tig welding are dependent upon plate thickness and welding position.

Other shielding Gases may be used for Mig and Tig welding. Shielding gases are chosen taking Quality, Cost, and Operability into consideration

Submerged Arc Welding

Reverse Polarity is suggested

Wire Diameter	<u>Amps</u>	<u>Volts</u>
3/32	250-450	28-32
1/8	300-500	29-34
5/32	400-600	30-35
3/16	500-700	30-35

Both Agglomerated and fused fluxes can be used for submerged arc welding. Note: The chemical composition of the flux mainly affects the chemistry of the weld metal and consequently its corrosion resistance and Mechanical properties.

