WELDWIRE COMPANY, INC.

Technical Information

Stainless Steel Bare Wire

Alloy: WW409NB Class: ER409NB Conforms to Certification: AWS A5.9 ASME SFA A5.9

<u>Alloy ER409NB Welding Data formally ER409CB</u> Weld Process: Used for Mig, Tig, and automatic Submerged Arc

AWS Chemical Composition

C = 0.08 max	Si = 1.00 max
Cr = 10.5 - 13.5	P = 0.04 max
Ni = 0.60 max	S = 0.03 max
Mo = 0.50 max	Cu = 0.75 max
Mn = 0.80 max	$Nb = 10 \ge C \pmod{-0.75} (max)$

Deposited Chemical Composition % (Typical)

C = 0.05	Mo = 0.30	P = 0.016
Cr = 11.5	Mn = 0.62	S = 0.018
Ni = 0.35	Si = 0.48	Cu = 0.16
Nb = 0.50		

Deposited All Weld Metal Properties

Data is typical for ER409CB weld metal deposited by mig using argon + 2% oxygen and tig using 100% argon as the shielding gas. Data on sub-arc is dependent on the type of flux used.

Mechanical Properties R.T.

Yield Strength	50,500psi
Tensile Strength	67,000psi
Elongation	26%

Application

ER409Nb is a ferritic stainless steel welding wire which is used to weld Type 409 and 409Ti base materials. Addition of columbium leads to a preferential reaction with carbon, saving chromium from forming carbides. This improves corrosion resistance, increases strength at high temperatures.

Recommended Welding Parameters

GMAW	"Mig Pr	ocess"	Rev	ersed Polarity	
Wire <u>Diameter</u>	Wire <u>Feed</u>	Amps	Volts	Shielding Gas	Gas CFH
Short Arc	Welding				
.030 .035	13-26 13-26	40-120 60-140	16-20 16-22	Argon+2% O ₂ Argon+2% O ₂	25 25
Spray Arc	Welding				
.035	20-39	140-220	24-29	Argon+2% O ₂	38
.045	16-30	160-260	25-30	Argon+2% O ₂	38
1/16	10-16	230-350	27-31	Argon+2% O ₂	38

GTAW "Tig Process"

Wire Diameter	Amps DCRP	Voltage	Gases
.035 .045	60-90 80-110	12-15 13-16	Argon 100% Argon 100%
1/16 3/32	90-130 120-175	13-10 14-16 15-20	Argon 100% Argon 100%

Note: Parameters for tig welding are dependent upon plate thickness and welding position.

Other shielding Gases may be used for Mig and Tig welding. Shielding gases are chosen taking Quality, Cost, and Operability into consideration

Submerged Ar	c Welding	
Reverse Polarity is	suggested	
Wire Diameter	Amps	Volts
3/32	250-450	28-32
1/8	300-500	29-34
5/32	400-600	30-35
3/16	500-700	30-35

Both Agglomerated and fused fluxes can be used for submerged arc welding. Note: The chemical composition of the flux mainly affects the chemistry of the weld metal and consequently its corrosion resistance and Mechanical properties.

