WELDWIRE COMPANY, INC.

Technical Information

Stainless Steel Bare Wire

Alloy: WW410 Class: ER410

Conforms to Certification: AWS A5.9 ASME SFA A5.9

Alloy ER410 Welding Data Weld Process: Used for Mig, Tig, and automatic Submerged Arc

AWS Chemical Composition

C = 0.12 max	Si = 0.50 max
Cr = 11.5 - 13.5	P = 0.03 max
Ni = 0.60 max	S = 0.03 max
Mo = 0.75 max	Cu = 0.75 max
Mn = 0.60 max	

Deposited Chemical Composition % (Typical)

C = 0.11	Mo = 0.08	P = 0.014
Cr = 12.5	Mn = 0.45	S = 0.01
Ni = 0.35	Si = 0.39	Cu = 0.10

Deposited All Weld Metal Properties

Data is typical for ER410 weld metal deposited by mig using argon + 2% oxygen and tig using 100% argon as the shielding gas. Data on sub-arc is dependent on the type of flux used.

Mechanical Properties R.T.

Yield Strength	78,500psi
Tensile Strength	89,000psi
Elongation	24%

Application

ER410 is used for welding types 403, 405, 410, 414, and 416. Also an overlay on carbon steels for corrosion, erosion and abrasion resistance.

It is recommended using 350°F preheat before welding.

Recommended Welding Parameters

GMAW	"Mig Pr	ocess"	Rev	ersed Polarity	
Wire <u>Diameter</u>	Wire <u>Feed</u>	Amps	Volts	Shielding Gas	Gas CFH
Short Arc	Welding				
.030 .035	13-26 13-26	40-120 60-140	16-20 16-22	Argon+2% O ₂ Argon+2% O ₂	25 25
Spray Arc	Welding				
.035 .045	20-39 16-30	140-220 160-260	24-29 25-30	Argon+2% O ₂ Argon+2% O ₂	38 38

Argon+2% O₂

38

10 - 16GTAW "Tig Process"

1/16

Wire <u>Diameter</u>	Amps DCRP	Voltage	Gases
.035 .045 1/16	60-90 80-110 90-130	12-15 13-16 14-16	Argon 100% Argon 100% Argon 100%
3/32	120-175	15-20	Argon 100%

230-350 27-31

Note: Parameters for tig welding are dependent upon plate thickness and welding position.

Other shielding Gases may be used for Mig and Tig welding. Shielding gases are chosen taking Quality, Cost, and Operability into consideration

Submerged Arc Welding Reverse Polarity is suggested

Wire Diameter	Amps	Volts
3/32	250-450	28-32
1/8	300-500	29-34
5/32	400-600	30-35
3/16	500-700	30-35

Both Agglomerated and fused fluxes can be used for submerged arc welding. Note: The chemical composition of the flux mainly affects the chemistry of the weld metal and consequently its corrosion resistance and Mechanical properties.

