WELDWIRE COMPANY, INC.

Technical Information

Alloy: WW410NiMo Class: ER410NiMo Conforms to Certification: AWS A5.9 ASME SFA A5.9

Alloy ER410NiMo Welding Data Weld Process: Used for Mig, Tig and Automatic Submerged Arc

AWS Chemical Composition

C = 0.06 max	Si = 0.50 max
Cr = 11.0 - 12.5	P = 0.03 max
Ni = 4.0 - 5.0	S = 0.03 max
Mo = 0.4 - 0.7	Cu = 0.75 max
Mn = 0.60 max	

Deposited Chemical Composition % (Typical)

C = 0.02	Mo = 0.55	P = 0.012
Cr = 11.8	Mn = 0.45	S = 0.009
Ni = 4.50	Si = 0.40	

Deposited All Weld Metal Properties

Data is typical for ER410NiMo weld metal deposited by mig using argon + 2% oxygen and tig using 100% argon as the shielding gas. Data on sub-arc is dependent on the type of flux used.

Mechanical Properties R.T.

Yield Strength	92,000psi
Tensile Strength	118,000psi
Elongation	20%

Application

ER410NiMo wire is used primarily to weld cast and wrought material of similar chemical composition. Recommend using preheat and inter-pass temperature of not less than 300°F. Post weld heat treatment should not exceed 1150°F, higher temperature may result in hardening.

Recommended	Welding	Parameters

GMAW	"Mig Pr	ocess"	Rev	ersed Polarity	
Wire <u>Diameter</u>	Wire <u>Feed</u>	Amps	Volts	Shielding Gas	Gas CFH
Short Arc	Welding				
.030 .035	13-26 13-26	40-120 60-140	16-20 16-22	Argon+2% O ₂ Argon+2% O ₂	25 25
Spray Arc	Welding				
.035 .045 1/16	20-39 16-30 10-16	140-220 160-260 230-350	24-29 25-30 27-31	Argon+2% O ₂ Argon+2% O ₂ Argon+2% O ₂	38 38 38

GTAW "Tig Process"

Wire Diameter	Amps DCRP	Voltage	Gases
.035	60-90	12-15	Argon 100%
.045	80-110	13-16	Argon 100%
1/16	90-130	14-16	Argon 100%
3/32	120-175	15-20	Argon 100%

Note: Parameters for tig welding are dependent upon plate thickness and welding position.

Other shielding Gases may be used for Mig and Tig welding. Shielding gases are chosen taking Quality, Cost, and Operability into consideration

Submerged Arc Welding Reverse Polarity is suggested

Wire Diameter	Amps	Volts
3/32	250-450	28-32
1/8	300-500	29-34
5/32	400-600	30-35
3/16	500-700	30-35

Both Agglomerated and fused fluxes can be used for submerged arc welding. Note: The chemical composition of the flux mainly affects the chemistry of the weld metal and consequently its corrosion resistance and Mechanical properties.

