WELDWIRE COMPANY, INC.

Technical Information

Stainless Steel Bare Wire

Alloy: WW630 Class: ER630 Conforms to Certification: AWS A5.9 ASME SFA A5.9

Alloy ER630

Weld Process: Used for Mig, Tig, and Submerged Arc

AWS Chemical Composition Requirements

C = 0.05 max	Si = 0.75 max	
Cr = 16.0 - 16.75	P = 0.03 max	GMAW Mig Process
Ni = 4.5 - 5.0	S = 0.03 max	Wire Wire Amps Volts
Mo = 0.75 max	Cu = 3.25 - 4.00	Diameter Feed
Mn = 0.25 - 0.75	Nb + Ta = 0.15 - 0.30	Short Arc Welding

Deposited Chemical Composition % (Typical)

C = 0.03	Mo = 0.20	P = 0.020
Cr = 16.51	Mn = 0.54	S = 0.018
Ni = 4.75	Si = 0.41	Cu = 3.62
Nb + Ta = 0.23		

Deposited All Weld Metal Properties

They are dependent on the utilization of a post weld heat treatment and a precipitation hardening based on temp, and time exposed to temperature.

Mechanical Properties (R.T.)	
Yield Strength	150,000psi
Tensile Strength	135,000psi
Elongation	10%

Application

ER630 classification is designed primarily for welding ASTM A564 type 630 and some other precipitation-hardening stainless steels. The composition is modified to prevent the formation of ferrite networks in the martensitic microstructure which has a great effect on mechanical properties. The weld metal may be used either as welded, welded and precipitation hardened, or welding and solution treated.

Mechanical properties of this alloy are greatly influenced by the heat treatment.

Recommended Welding Parameters

<u>GMAW</u>	' "Mig P	rocess"	<u>Re</u>	versed Polarity	
Wire <u>Diameter</u>	Wire Feed	Amps	Volts	Shielding Gas	Gas CFH
Short Arc	Welding				
.030 .035	13-26 13-26	40-120 60-140	16-20 16-22	Argon+2% O ₂ Argon+2% O ₂	25 25
Spray Arc	Welding				
.035	20-39	140-220	24-29	Argon+2% O ₂	38
.045	16-30	160-260	25-30	Argon+2% O ₂	38
1/16	10-16	230-350	27-31	Argon+2% O ₂	38

GTAW "Tig Process"

Wire <u>Diameter</u>	Amps DCRP	Voltage	Gases
.035	60-90	12-15	Argon 100%
.045	80-110	13-16	Argon 100%
1/16	90-130	14-16	Argon 100%
3/32	120-175	15-20	Argon 100%

Note: Parameters for tig welding are dependent upon plate thickness and welding position.

Other shielding Gases may be used for Mig and Tig welding. Shielding gases are chosen taking Quality, Cost, and Operability into consideration

Submerged Arc Welding
Reverse Polarity is suggested

Wire Diameter	<u>Amps</u>	<u>Volts</u>
3/32	250-450	28-32
1/8	300-500	29-34
5/32	400-600	30-35
3/16	500-700	30-35

Both Agglomerated and fused fluxes can be used for submerged arc welding. Note: The chemical composition of the flux mainly affects the chemistry of the weld metal and consequently its corrosion resistance and Mechanical properties.

