WELDWIRE COMPANY, INC.

Technical Information

Flux-cored Wire Cobalt

Alloy: WWCobalt #1 Flux Cored Wire Conforms to Certification: AWS A5.21 ASME SFA A5.21 Class: ERCCoCr-C

Alloy: ERCCoCr-C Weld Process: GMAW Flux Core

AWS Chemical Composition Requirements		Deposited Charpy-V-Notch Impact Properties %			
C = 2.0 - 3.0	Mo = 1.0 max	Not Applicable			
Mn = 2.0 max	Fe = 5.0 max	Not Applicable			
Si = 2.0 max	W = 11.0 - 14.0	Recommended Operation of Welding Rods Flat Welding			
Cr = 25 - 33	Co = Remainder				
Ni = 3.0 max	Other = 1.0 max				
		<u>Diameter</u>	Amps DCEP	<u>Volts</u>	Shielding Gas
Deposited Chemical Composition % (Typical)		.045	180 - 200	25 - 27	argon
C = 2.6	Mo = 0.10	1/16	250 - 300	26 – 28	argon
Mn = 0.6	Fe = 2.6				
Si = 0.2	W = 11.2				
Cr = 25.8	Co = Balance	Application			
Ni = 2.2		Type #1 Flux Cored Wire (ERCCoCr-C) is a tubular version of the highest hardness standard cobalt alloy used			

Deposited All Weld Metal Properties % (AW)

Hardness (2 layer) HRC 48 – 50

Type #1 Flux Cored Wire (ERCCoCr-C) is a tubular wire version of the highest hardness standard cobalt alloy used with chromium carbides that impact outstanding abrasive wear resistance. The addition of tungsten enhances high temperature hardness and matrix toughness for excellent adhesive and solid particle erosion wear resistance. It bonds well with all weldable steels including stainless.

If additional information is needed Contact Weldwire Company, Inc. 800-523-1266