WELDWIRE COMPANY, INC.

Technical Information

Nickel Alloy Wire

Alloy: WWNA718 Conforms to Certification: AWS A5.14

Class: ERNiFeCr-2 ASME SFA A5.14

Alloy: ERNiFeCr-2 (Alloy 718)

Weld Process: GMAW, GTAW and ASAW Welding Processes

AWS Chemical Composition Requirements		Deposited Cher	Deposited Chemical Composition % (Typical)		
C = 0.08 max	Cu = 0.30 max	C = 0.04	Si = 0.12	Ni = 52.5	
Mn = 0.35 max	Ni = 50.0 - 55.0	Mn = 0.25	Cr = 19.0	Nb/Ta = 5.0	
Fe = Remainder	A1 = 0.20 - 0.80	Fe = Balance	Mo = 3.0	S = 0.009	
P = 0.015 max	Ti = 0.65 - 1.15				
S = 0.015 max	Cr = 17.0 - 21.0				
Si = 0.35 max	Nb + Ta = 4.75 - 5.50	Deposited Char	Deposited Charpy-V-Notch Impact Properties %		
Mo = 2.80 - 3.30	Other = 0.50 max	Not applicable			

Application

ERNiFeCr-2 (NA718) filler metal is used by gas tungsten arc welding process for Cr-Ni-Nb-Mo alloys. Use of high heat impart process such as mig often results in micro-fissuring.

Recommended Welding Parameters for TIG,MIG, and SAW Welding of Nickel Alloys

<u>Process</u>	Diameter of Wire	Voltage (V)	Amperage (A)	Gas
Tig	.035 inches x 36	12 -15	60 -90	100% Argon
	.045 inches x 36	13 -16	80 - 110	100% Argon
	1/16 inches x 36	14 - 18	90 - 130	100% Argon
	3/32 inches x 36	15 - 20	120 -175	100% Argon
	1/8 inches x 36	15 - 20	150 - 220	100% Argon
MIG	.035 inches	26 - 29	150 - 190	75% Argon + 25% Helium
	.045 inches	28 - 32	180 - 220	75% Argon + 25% Helium
	1/16 inches	29 - 33	200 - 250	75% Argon + 25% Helium
SAW	3/32 inches	28 - 30	275 - 350	Suitable Flux may be used
	1/8 inches	29 - 32	350 - 450	Suitable Flux may be used
	5/32 inches	30 - 33	400 - 550	Suitable Flux may be used

Note: Other shielding Gases may be used for Mig and Tig welding. Shielding gases are chosen taking Quality, cost, and

Operability into consideration.

Note: Both agglomerated and fused fluxes can be used for submerged arc welding.

Note: The chemical composition of the flux mainly affects the chemistry of the weld metal and consequently its corrosion

resistance and mechanical properties.

